AI 51

The spelled-out intro to language modeling: building makemore

['emma', 'olivia', 'ava', 'isabella', 'sophia', 'charlotte', 'mia', 'amelia', 'harper', 'evelyn'] b = {} for w in words: chs = [''] + list(w) + [''] for ch1, ch2 in zip(chs, chs[1:]): bigram = (ch1, ch2) b[bigram] = b.get(bigram, 0) + 1 sorted(b.items(), key = lambda kv: -kv[1]) [(('n', ''), 6763), (('a', ''), 6640), (('a', 'n'), 5438), (('', 'a'), 4410), (('e', ''), 3983), names.txt에 이름들에 start..

AI/Andrej Karpathy 2023.01.24

The spelled-out intro to neural networks and backpropagation: building micrograd

a = Value(2.0, label='a') b = Value(-3.0, label='b') c = Value(10.0, label='c') e = a*b; e.label = 'e' d = e + c; d.label = 'd' f = Value(-2.0, label='f') L = d * f; L.label = 'L' L 현재 dL/dd = -2 인 상태에서 chain rule 를 통해 dL/de 를 구하려면 dL/de = (dL/dd) * (dd/de) e를 변화했을떄 미치는 L의 변화 = d를 변화했을떄 L의 변화 * e를 변화했을때 d의 변화 (local derivative) + 는 여기서 router의 역할을 하게 된다 그냥 넘어온 dL/dd 를 골고루 뿌려준다. 현재 e,c local deri..

AI/Andrej Karpathy 2023.01.23

Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions (Paper Explained)

we want to some how see image like left above , and find the shortest path and output that path with image like right above or how long is shortest path h,v = parameters(theta) things we cal when backprop problem is how we are gonna backpropagte since "fu" is for determing some property of shortest path ,for example getting distance of shortest path, but "hv" is about extracting input graph to t..

AI/Yannic Kilcher 2021.11.28