Getting Started | Creating a Batch Service (spring.io)
Creating a Batch Service
this guide is designed to get you productive as quickly as possible and using the latest Spring project releases and techniques as recommended by the Spring team
spring.io
basically we have a "JOB" to process.
Inside "JOB" there are 3 steps. Reader, Processor , Writer
package io.javabrains.ipldashboard.data;
import java.time.LocalDate;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.item.ItemProcessor;
import io.javabrains.ipldashboard.model.Match;
public class MatchDataProcessor implements ItemProcessor<MatchInput, Match> {
private static final Logger log = LoggerFactory.getLogger(MatchDataProcessor.class);
@Override
public Match process(final MatchInput matchInput) throws Exception {
Match match = new Match();
match.setId(Long.parseLong(matchInput.getId()));
match.setCity(matchInput.getCity());
match.setDate(LocalDate.parse(matchInput.getDate()));
match.setPlayerOfMatch(matchInput.getPlayer_of_match());
match.setVenue(matchInput.getVenue());
String firstInningsTeam, secondInningsTeam;
if ("bat".equals(matchInput.getToss_decision()))
{
firstInningsTeam = matchInput.getToss_winner();
secondInningsTeam = matchInput.getToss_winner().equals(matchInput.getTeam1())
? matchInput.getTeam2() : matchInput.getTeam1();
}
else
{
secondInningsTeam = matchInput.getToss_winner();
firstInningsTeam = matchInput.getToss_winner().equals(matchInput.getTeam1())
? matchInput.getTeam2() : matchInput.getTeam1();
}
match.setTeam1(firstInningsTeam);
match.setTeam2(secondInningsTeam);
match.setTossWinner(matchInput.getToss_winner());
match.setTossDecision(matchInput.getToss_decision());
match.setResult(matchInput.getResult());
match.setResultMargin(matchInput.getResult_margin());
match.setUmpire1(matchInput.getUmpire1());
match.setUmpire2(matchInput.getUmpire2());
return match;
}
}
First we implement "process" step. here MatchInput is raw csv file from kaggle and we wanted to process it and output as "Match" java class.
package io.javabrains.ipldashboard.data;
import javax.sql.DataSource;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.item.database.BeanPropertyItemSqlParameterSourceProvider;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;
import io.javabrains.ipldashboard.model.Match;
@Configuration
@EnableBatchProcessing
public class BatchConfig {
private final String[] FIELD_NAMES = new String[] {
"id","city","date","player_of_match","venue","neutral_venue","team1","team2","toss_winner","toss_decision","winner","result","result_margin","eliminator","method","umpire1","umpire2"
};
@Autowired
public JobBuilderFactory jobBuilderFactory;
@Autowired
public StepBuilderFactory stepBuilderFactory;
@Bean
public FlatFileItemReader<MatchInput> reader() {
return new FlatFileItemReaderBuilder<MatchInput>().name("MatchItemReader")
.resource(new ClassPathResource("/match-data/match-data.csv")).delimited()
.names(FIELD_NAMES)
.fieldSetMapper(new BeanWrapperFieldSetMapper<MatchInput>() {
{
setTargetType(MatchInput.class);
}
}).build();
}
@Bean
public MatchDataProcessor processor() {
return new MatchDataProcessor();
}
@Bean
public JdbcBatchItemWriter<Match> writer(DataSource dataSource) {
return new JdbcBatchItemWriterBuilder<Match>()
.itemSqlParameterSourceProvider(new BeanPropertyItemSqlParameterSourceProvider<>())
.sql("INSERT INTO match (id,city,date,player_of_match,venue,team1,team2,toss_winner,toss_decision,match_winner,result,result_margin,umpire1,umpire2) "+
" VALUES (:id,:city,:date,:playerOfMatch,:venue,:team1,:team2,:tossWinner,:tossDecision,:matchWinner,:result,:resultMargin,:umpire1,:umpire2)")
.dataSource(dataSource).build();
}
@Bean
public Job importUserJob(JobCompletionNotificationListener listener, Step step1) {
return jobBuilderFactory.get("importUserJob")
.incrementer(new RunIdIncrementer())
.listener(listener)
.flow(step1)
.end()
.build();
}
@Bean
public Step step1(JdbcBatchItemWriter<Match> writer) {
return stepBuilderFactory.get("step1")
.<MatchInput, Match> chunk(10)
.reader(reader())
.processor(processor())
.writer(writer)
.build();
}
}
here in step1 method we read 10 rows from our csv file and process it make it to Match.class format and writer we just print it on console.
'WEB > Spring Batch' 카테고리의 다른 글
스프링 배치 실행 - Flow (0) | 2023.03.03 |
---|---|
스프링 배치 실행 - Step (0) | 2023.02.28 |
스프링 배치 실행 - Job (0) | 2023.02.23 |
스프링 배치 도메인 이해 (0) | 2023.02.17 |
스프링 배치 소개 + 시작 (0) | 2023.02.16 |